한완수 수2상편 질문드립니다
게시글 주소: https://snu.orbi.kr/0003349739
헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야키니쿠가서 우설 안창살에 생맥주 아츠강을 적시고 싶다
-
신분증 대체 2
재수생인데 민증을 잃어버렸어요.., 여권은 유효기간 만료되었는데 대체 가능한거...
-
닿았어닿았어닿았어닿았어닿았어닿았어닿았어 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ골때리네진짜
-
너무 힘들다 14
내인생왜이러냐
-
에타를 보니 고려대학교 에타로 바뀐거 깉더군요
-
수능판 뜨자구요 0
저도 올해보는 마지막 수능으로 꼭 한의대 쟁취할거고 다른분들도 올해 수능이 마지막 수능 되시기를
-
몸이안낫는다 1
ㅈ같네 진짜
-
하아
-
옯끼야아아악 2
으악 꺄악 끼야아악
-
안올것같지만 반드시 오는 그날이....
-
멘탈 개나간다 1시에 누웠는데
-
ㅈㄴ시끄러
-
ㅠㅠ
-
윾건...그저 goat 하지만 어림없지 '누가 배웠는데'
-
계정 헷갈린 Fㅔ미 검거 ㅋㅋㅋㅋㅋㅋㅋ 진짜 특정 집단에서 계정 사서 여론 조작하는 거 맞다니까
-
진인사대천명 0
수능 다 잘 보길 바라지 않습니다 죽어라 노력한 사람은 실력보다 더 잘 보길...
-
26학년도 수능 0
낼부터 시작할건데 같이 가실 분 댓ㄱㄱ
-
가오도 주세요 그냥 제게 강림해주세요 빙의해주세요 선생님의 가르침 헛되지 않게 해볼게요
-
왜 자꾸 머릿속에 멤도냐 이기상 선생님 목소리 억양이랑 같이 생각남
-
좀 열심히 할걸 싶기도 한데 뭐 그동안 안했던거보면 난 과거로 가도 또 애니보고...
-
술 괜히 마셨다
-
Team 07 D-366
-
노베 재수 5
핑계지만 예체능이라 고3 올라오고 나서는 공부를 거의 안했습니다. 내신은...
-
내일 할거 0
기출 복습후 취침 꿀잠자고 수능 패기
-
오늘 3시간정도 자고 내일 헬스 존나 달려서 11시취침->6시기상 헬스 왜하냐면...
-
동덕여대 0
나중에 역효과 엄청 날 것 같아요 입결 떨어지려나요.... 여튼 사람들한테 인식...
-
날샐려면 10시반~11시까지는 졸음와도 존버타야함
-
일단 나 낼 잠 안올거 같아서 그냥 3시간만 자려고...
-
그냥 수능 공부??
-
이수법 수능때도 써먹어야겟다 걍 깊게 생각안하고 좀만 틀린거같은거 바로 체크하고...
-
얼굴 보여줘야했나 기억이 안나네요
-
안 한지 2개월 넘었는데 저도 참 바보 멍청이네요... 다행인건 반팔 시즌 아니라...
-
ㄹㅇ 밤샐까 2
진짜 30분 ~1시간넘게 누워있았는데 잠이안온다 진짜 차라리 공부하고 저녁 8시쯤에...
-
https://orbi.kr/00060979827/%E2%9D%97%EC%9D%B8%...
-
안녕하세요, Aclass입니다. 수능 시험 직후 정답을 교차검증하여, 높은 정확도로...
-
데드 개빡세게함
-
시위하는거 너무 시끄럽고 꼴뵈기 싫음
-
동덕여대 떡밥 0
이거 수능 끝나고 터졌으면 오르비에서 놀맛 났을텐데 ㅋㅋ 좀만 늦게 터뜨리지..
-
후기 남기러 수능날에 돌아올게요
-
작년 수능 전날에 잠 안와서 3시간인가 4시간 자고 들어갔어서 오늘 걍 안자고 내일...
-
진짜 다 왔네요 오늘 하루만 버팁시다!!
-
하려하는데 탐구는 ebsi로 된다봄??
-
수능준비물 3
주변에 평소에도 짐 보따리로 싸 다니는 친구 있는데 수능 준비물로 여분 속옷하고...
-
수능때 물 2
페트병 500ml 가져갈때 라벨 떼고 가져가야하나요? 그리고 시험을 볼때 같이...
-
국수베이스충분함
-
그냥 느낌이 그럼 참고로 작년에 선거 관련 지문 나올거 같다고 느낌왔는데 맞았음...
-
수많은 시험 중에 하나일뿐 능력껏 보는거고 그만큼의 점수가 나오는게 당연 대학 맘에...
-
분명 옛날엔 덕코가 많았던 거 같은데 그땐 어케 많았던 거지..? 오르비를 미친 듯이 했었나..??
-
아니면 오늘 몸 피곤하게 만드려고 전략적으로 안자는거임?
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.