수능 수학 - 기출문제를 대하는 자세
게시글 주소: https://snu.orbi.kr/0004546443
1. 안녕하세요~
안녕하세요. 저는 이번에 2014수능을 본 수험생입니다.
2013 수능 수학 가형 1등급 턱걸이의 아쉬움으로 인해 2014 수능을 다시 치르게 되었습니다.
1년 전, 자신 있던 과목에 너무 충격을 먹어서인지 2014학년도에는 만반의 준비를 갖추었고, 다소 과한 나머지(?) 수학만 시간이 45분 정도가 남고...(다른 과목은 망해버렸네요///)
그래도 누군가에게는 1등급 -> 100점 의 과정이 필요할 것 같아서 제 경험을 토대로 글을 써보려 합니다.
(2013학년도 수리 6평/9평/수능 100/88/93 -> 그저 그런 1등급...심지어 10월은 2등급;;
2014학년도 수학 강대 모의고사 포함 모든 모의고사 100점!!)
2. 수학 기출 문제를 공부해야 한다?
여러분은 수학 기출을 왜 풀어야 한다고 생각하나요? 어차피 이 세상에 존재하지 않는 새로운 30문제가 등장할 것이고 또 이상하게 수학은 기출문제를 풀어도 수학 실력이 느는 거 같지가 않은데 말이죠.
그럼 우선, 수학 기출문제를 왜 풀어야 하는지 예시 문항부터 보겠습니다.
다들 아시다 시피 아래문제는 올해 대수능 수학B형 29번 문항입니다.
이 문제를 보고 무슨 생각이 드셨나요?
어렵다. 난해하다. 역시 평가원 짱!!!
이런 생각이 들면 이미 기싸움에서 밀린 겁니다.
이 순간, 문제에 써진 표현을 식으로 옮겨보자는 생각을 한 순간, 문제는 쉬운 방향으로 흘러갑니다. -> 이 이야기는 나중에 다루도록 할게요. : 여러분의 관심이 필요합니다!
다음으로 살펴볼 문제는 2012학년도 대수능 수리 가형 21번 문제입니다.
물론, 이 문제를 시험장에서 직접 겪지는 않아서 처음 봤을 때의 느낌은 잘 기억이 남지 않지만, 꾸준히 수학 공부를 하신 상태에서 고3 후반부가 되면 이 문제의 풀이 방법에는 크게 두 가지라고 거의 외울 정도가 됩니다, (되시는 분이 많습니다, 그렇게 되게 되어있습니다, 그래야 합니다.)
첫째 방법은 평면의 법선 벡터를 직접 설정해서 풀이하는 방법입니다.
두 번째 방법은 법선 벡터 없이 세 평면이 하나의 교선을 가질 때를 생각하고 평면화하여 삼각함수를 이용하여 문제를 푸는 방법입니다.
저는 2014수능 수학B형 29번을 풀면서 21번이 자연스럽게 떠올랐고, 덕분에 평가원을 믿고 다음 단계로 진행할 수 있었습니다. (어떤 과정이었을지 스스로 풀어보시면 좋겠습니다.)
3. 기출문제를 언제, 몇 번씩, 어떻게 풀어야 할까?
위에서 구구절절 예시까지 들며 이야기를 했지만, 사실 기출문제를 푸는 데에 정도는 없습니다. 많이 푸는 놈이 이기고, 평가원의 생각을 쉽게 습득하는 녀석이 이기는 거겠죠.
수험생 게시판에 가끔 “수학은 무조건 기출문제죠?”, “수학, 처음부터 기출문제를 계속 돌리면 점수 오르나요?” 라는 질문이 올라옵니다.
저는 이러한 식의 질문에 단호하게 “아니!” 라고 말하고 싶습니다.
이유는 단 하나입니다.
너무 일찍 풀면 기출문제의 맛을 음미할 수가 없습니다. 고기도 먹어본 놈이 잘 먹는다고 수학문제도 잘 푸는 학생이 잘 풉니다. 수험생 초기에는 기출문제가 눈에는 그냥 복잡한 문제로 밖에 안보입니다. 제 주변에 어떤 학생이 했던 짓을 예시로 들어볼게요.
2012학년도 9월 수리 가형 16번 문항입니다.
다들 아실 겁니다. 저 화살표 부분을 적당히 치환하고 계산을 하면 쉽죠.
그런데 그 학생은 대놓고 A 와 B 를 구하고 있었습니다.
민주주의 나라에서 뭘 하든 자기 마음이겠지만 보는 친구들은 안타까워하며 말렸지만 꿋꿋이 계산해 나가는 모습이 참 보기 좋았습니다.
만일 위와 같은 방식으로 똑같이 3번 풀어놓고 ‘난 기출 세 번 돌림~^^’ 이러고 다닌다면 차라리 안 푸느니만 못한 상황이 되고, 기출문제는 정말 쓰레기 of 쓰레기가 되어버립니다.
저도 1년 전에는 무조건 기출! 기출! 하며 수학 공부를 했었습니다.
하지만, 기출이 능사가 아니더군요.
이 세상에 존재하는 많은 양의 문제를 풀어 수학 전반적인 실력을 쌓은 뒤에 기출을 제대로
보는 것이 초기부터 국어처럼 기출 문제집만 잔뜩 쌓아놓고 이미 풀었던 문제들 또 푸는 것보다 훨씬 낫습니다.
그렇다고, 문제집에 있는 기출문제는 모두 풀지 말라는 뜻은 아닙니다!!! 수험생활 초기에도 수학선생님들은 당연히 기출문제를 들고 수업을 하십니다. 기출문제에서 배울 것은 배워야죠. 단, 닥치고 기출은 아니라는 점입니다. 초기에는 기출을 기출처럼 보지 않는 것도 현명한 방법입니다.
4. 마무리
인생에서 첫 수능을 준비하시는 예비 고3, 혹시 기출에만 목멜 준비하시고 계신가요? 다시 도전하시는 졸업생 분들, 혹시 기출만 맹목적으로 바라보시지 않으셨나요?
기출, 분명히 풀고 시험장 들어가야 합니다. 맹목적으로 추구하는 건 무엇이든 위험합니다. 기출 문제와 타 시중 문제들을 골고루 균형 있게 섭취하며 건강하게 수학 공부하시길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
5분컷하고 화장실가서 지는 노을이 장관임
-
언매 91 확통 97 영1 사문 86 정법 88 이면 생윤.한지로 돌려서 한번 더...
-
수학 실모 0
수학 3위로만 뜨면 되서 지금까지 틀린거 복습&실모2회차 할려 하는데 어떻게...
-
수능날에 최저 2자릿수는...
-
남은 기간동안 기출만 계속 돌릴까요 아님 이해원 시즌3도 같이 풀까용.. 목표는 미적 2컷입니다!!
-
매체 ㅈ같네 7
문제를 왤케 얍쌉하게 내냐
-
열내렸다 14
아까는 헛것이 보였는데 몸상태의 정상화
-
천재들이 악필이라 했단 말이야...
-
확실히 6월9월 퀄리티랑 수능 퀄리티 차이도 꽤 나는듯
-
점메추좀 7
ㅇㅇ
-
브레턴 두문제 빼고 다 틀림 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ 아 올해초에도 이랬는데 발전한게없네
-
경제글쓰고싶다 3
수많은 경제붕이들과 경제지문 혐오자들을 위한...
-
자아분열이 되...
-
수1,2를 하려 하는데요 수상하가 제대로 안돼있으면 안된다 들어서 이번에 복습할...
-
제가 머리 쓰면서 문제풀면 많이 더워하는 채질이라… 수능볼때 탁상형 선풍기 반입 가능하나요??
-
=/ 실수전체에서 연속이죠? 좌극한 우극한만 달라도 정의만되어있으면 되는거니
-
0101010101010101010011 경제 + "그 비율" 이거 두개만 아니면...
-
띵학모 모려고 듣기 듣는데 첫 20초 기타가 너무 좋아서 못넘어가겠어
-
오카네 카세구 0
와타시와 스탑스탑스탑
-
ㅈㅁㅇ ㄱ ㄴㅇ
-
전 35분 확보해야 다 푸는듯..
-
가즈아아
-
음 혜화내음. 3
성뱃으로.
-
이거리얼임 제앞에 지금 흑인 아조시들잇어요
-
두각 학원 환불 0
올해 25 수능을 치는데 혹시나의 재수 가능성을 염두에 두고 내년 두각 현강을...
-
한번호로 밀면 몇개는 맞겠지.. 문학 화작 정확도는 높은데 시간이 너무 걸려서...
-
진짜 뒤통수 플스윙 마렵게하네
-
신고 먹고 블라될수도 있는데 개빡쳐서 글씀 아니 모의고사 보고나서 성적 분석표...
-
몸살 1
수능 6일전인데 몸살난거같은데 날씨때문에 그런건 같지는 않고 막바지로 다가오니깐...
-
러셀 김강민t 현강 들으신분 어떤가요 혹시
-
아직도 충격적인게 아는 지인 삼수하고 경북대 간호? 거기 갔는데 진짜 무슨 죄...
-
87점 맞았어요. 근데 전 평가원도 ㅅ엄청 쉽게 나온거 아닌이상 많이 어렵든, 조금...
-
확실히 저게 문제였나보네 환율의가치가 좀 비직관적이라고하면 그럴수있긴함 대부분...
-
또 나는 나의 모든 걸 어떻게 할 수가 없었어...
-
재수생
-
물론 수능은 미적칠거임
-
아 진짜 국어 좆됏네 ㅋㅋㅋㅋ 어케 삼수를하는데 현역때보다 퇴화하지
-
오밐추 8
사츠키 신곡 저녁 7시에 최초공개 같이 볼 오부이 구함
-
사문 개념 4
모든 하위문화는 주류문화에 의해 일탈로 규정될 수 있다 O X
-
히터좀 꺼주세요
-
정도가 지나쳐져서 이제 머리가 농담으로 절여졌는데 우짬>???
-
잘가><
-
윷놀이식 1루 ㄱㅈㅇ
-
수능날엔 내가 무조건 이긴다 이겨낸다
-
같은 김밥집만 일주일에 5번 가는데 이상하게 볼까
-
군.캉스 5
에서 점심을 허.버허.버 먹었어요
-
아니꼬왔건게 과탐에서 개쳐맞다가 사탐런가서 존나 쉬운데? 과탐 왜 함 이지랄하면서...
-
오후는 수학만 파야겠다..
-
이제 삼수는 팀 아니긴 한데...
-
공부잘하는사람들다차단중 13
악의는 없다
음미.. 문제풀다보면 소름돋더라고요 전율이라해야할까
뒤늦게 질문합니다
2012 21번에서 두 번째 풀이인 세 평면이 하나의 교선을 가진다고 가정하는 것은 가지지 않을 수도 있다는 상황을 배제한 논리적 비약 아닌가요?
또한 2014 29번도 평면화해서, 이루는 각을 세타로 잡고 푸는 것도 논리적 비약 아닌가요?
2014수능을 보자마자 별생각없이 평면화해서 풀어서 맞았지만, 2015수능을 다시 준비하면서 29번에 대한 여러 풀이를 보니 제가 푼 풀이가 논리적 비약이 있다고 느꼈습니다 그래서 29번을 맞은건 운이 좋게 작용한거라고 생각하고있었는데 궁금해서 질문드립니다.
또 수학 1등급 턱걸이 수준에서 실력을 올리신 방법에 대해서 더 여쭤보고 싶습니다
일단 맨 아래 질문은 쪽지로 답변해드렸고...
그게 진정한 수학의 관점에서 보면 논리적 비약이 맞지만 수능 수학을 준비하는 수험생입장에서는 그게 오히려 정당하고 논리적인 길이라고 생각합니다.
그렇기에 기출문제를 꾸준히 공부하고 보는 것이구요.
논리적 비약... 충분히 맞는 말인데
지금 학생에게
'수학적 논리성'
vs
(2014학년도에서 29번을 맞은 것과 같은)
'절대로 운이 아닌 수능적 직감'
둘중에 무엇이 더 중요하신지 고려해보면 답이 나올 것 같습니다.
가지지 않을 경우 직접 해보실수 있어요
한 교선만 삐딱하게 해서 돌려보면