수학문제 하나만 물어볼게요;(수능완성 실전편 5회 29번)
게시글 주소: https://snu.orbi.kr/0004731375
타원x^2+4y^2=4의 1사분면위에있는점 P에서 그은접선의 x절편,y절편을 각각 Q,R이라할때
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
남캐일러 투척. 0
음 역시귀엽군
-
30번 틀 96 30번에 20분 갖다박고 못품…….
-
전공의들도 ‘사퇴하라’ 요구… 임현택 탄핵 표결 10일 진행 1
[헤럴드경제=김용재 기자] 대한의사협회(의협)가 10일 임현택 의협 회장의 탄핵...
-
뉴스를 못 올려서 아쉽다
-
어차피 작수성적 나와도 인서울 끝자락 남들이 모르는 곳 가서 집에서 통학할 수...
-
끼워팔기 0
https://www.hani.co.kr/arti/economy/economy_gen...
-
점메추 2
해주세요
-
보면 진짜 신기함. 나도 ㅈ반고 출신인데, 내신 공부하듯이 수능 공부하면...
-
현대문학 고전문학 하나씩 ㄱㄱ
-
비틱 X 기만 X 찐내 X 저격 X 메타 참여 거의 안 하고 자기 할거 묵묵히 하는...
-
오늘 점심메뉴 5
ㅊㅊ점 연어덮밥보다 마싯는 걸루
-
계속 시간 쪼달려서 이상한 실수 와다다 하는데 하...
-
[속보] 尹대통령 지지율 17%…최저치 또 경신 [갤럽] 3
[서울경제] 윤석열 대통령의 지지율이 정부 출범 이후 최저인 17%를 기록했다는...
-
개새끼 짖는소리가 이틀째 안멈춤 ㅅㅂㅅㅂ 나 개 좋아하는데 혐오 올거같네
-
작년에 정리 잘 안하고 마지막까지 기출 소홀히 하고 실모 위주로 가다가 컨디션...
-
화욜 업데이트된 거 얻어갈 거 많나?
-
모닝 이감 똥쌌다 10
하반기 2호 8차봤는데 85점 미안해여 근데 내 평소점수보다 낮아서...
-
3합 5 못맞추고 3합 6만 맞추면 원광치 빼고 다 힘들수도 있는데.... 하
-
87점 12 13 15 16 18 19 23 틀 사회 기술 여유롭다가 가나지문에...
-
읽고 나서야 문제에 들어갈 수 있을 것 같은데 좀 그런가요
-
커하찍었다. 독서 3개 문학 1개 틀 3분남기고 언매 검토에서 발발떨면서 고침 ㅋㅋㅋㅋ
-
민법 이거 약간 유희왕 같음. . .
-
추천좀요
-
그래프 개형 1
신기할정도로 평균그래프와 비슷하게 움직이는 ㄷㄷ
-
사유는 맛있음
-
수시 안썼는데 님들은 가채점 쓸거임? 원래 안쓸 생각이었지만 갑자기 맘이 바껴서...
-
요즘은 긍정적으로 사는거같음 오늘도 파이팅 수능때 커하 갱신하자!!!
-
한수 2
역대급 joat 선지 ㅈㄴ 중의적이네
-
73점 독서 1틀 문학 8틀 화작 3틀 고전시 진짜 힘드네 수필도..
-
방금 풀었는데 뭔가 찜찜하네요
-
이감 6-10 0
86점 보정 1컷되나요?
-
예 뭐 그렇게 됐습니더
-
광교호수공원의 사슴은 어디로 갔을까…30명 투입했지만 '행방 묘연' 2
[데일리안 = 허찬영 기자] 경기 수원시가 시민을 공격한 사슴을 포획하기로...
-
독서 9:22 문학 9:47 화작 9:57 마킹 가채점 하니까 20초남음 16번틀...
-
굉장히 지엽적으로 문제내네
-
ㅂㅅ보는재미
-
자세히는못해드려도 수능장에서 필요한 배경지식정도는 가능합니다 뭐가헷갈리시죠
-
브레턴우즈 교수가 사라졌다는 소식만으로 패닉이 오네 1
다들 수완 꺼내!!!!!! 지금부터 피도 눈물도 없는 경제학도의 시간이다
-
없지않음?
-
경제 어려운거보다 훨씬 나아요
-
지금 수능문제 출제하고 있거나 감옥에 있겠지ㄹㅇㅋㅋ
-
고전시 어케 읽는거임..
-
ㅠㅠㅠㅠ 아 우울해
-
진짜 작정하고 죽이려고 하면 에이어급 지문+브래턴우즈급 추론형 문제 낼 수도 있을 것 같은데
-
깊게 빠져드는순간 답도없다
-
그냥 69 1컷 교육청 97-98 정도 실력입니다 15 21 30 아직...
-
학교에서 0
국어 실모 못풀겠네 ㄹㅇ 공사장인가
-
아 치대 불합 7
ㅅㅂ 가능성 2순위 날아감
-
생윤의 침묵 _한용운 시인에 기대어 백양나무 진리는 갔습니다. 아아, 맑은 정신으로...
산술기하 합이나 곱 일정할때 써야됨
그게 딱하나로 정해지지 않는경우도 있지 않나요; 산술기하 문제에서
변수가 존재하면 산술기하평균이 성립은 하지만 최대,최솟값은 구할 수 없어요
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요?
산술기하평균으로는 16/a^2+1/b^2≥8/ab 까지만 알 수 있고
ab가 일정하지 않기때문에 어떤 상수 이상이라는 것은 모른다는 말씀이시네요.
코시슈바르츠 부등식을 써보시면 어떨까요?
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요???
아니에요. 그건 마치 9≥8 이므로 9의 최솟값은 8이다 라고 말씀하시는 것과 유사하네요.
16/a^2+1/b^2 가 8/ab 를 최솟값으로 갖는다 ⇔ 6/a^2 = 1/b^2
이건 맞지만 종속적으로 변화하는 a, b에 의해 16/a^2+1/b^2가 8/ab를 최솟값으로 갖지 않을 수도 있습니다.
무슨뜻이죠;;; ㅜㅠ
여태까지 항상 합의꼴에서 둘다 양수라는 조건하에 최솟값을 곱으로 구해왔었는데; 이문제는 왜적용이 안되는건지 모르겠어요;
일단은 16/a^2 = 1/b^2 일때 최솟값인 8ab가 되는건 사실이잖아요; 근데 여기서 (a,b)가 타원위의점이란것에서 타원의식에 대입하면 a,b가 모두 구해지지 않나요?
그러니까음... a^2와b^2의 관계식이 정해져있으니까 사실상 a^2를 b^2로 나타낼수 있을테고 결국 b만의 단독식으로 유도 되서 8ab를 갖을수 있는거 아닌가요
음.. 그러니가 최솟값이 머든지간에 분명 어떤 a, b가 존재해서 ab/8 을 최솟값으로 가질 것이고, 그 때의 a, b는 16/a^2 = 1/b^2 를 만족한다.
라는 말씀이시잖아요?
그렇다면 아닙니다+_+....
ab가 일정하지 않기 때문에 최솟값이라는 ab/8 은 커지기도 작아지기도 하지요.
그런데 여기에 a^2+4b^2=4 라는 조건이 붙기때문에 ab/8 은 단 하나로 결정되고, 다른 a, b에서 그 결정된 값보다 작은 값이 나오기 때문에 안돼요.
실제로 산술기하평균에 의해 나온 값보다 더 작은 l^2 값이 존재하잖아요~
이번 평가원 6평 28번 문제에서 사용된 부등식의 논리와 동일한 논리입니다. 부등식으로 표현된다고 해서 해당 변수가 반드시 최솟값을 가지는것을 보장할수는 없습니다. 단지 크거나 같다는 사실만을 지칭할 뿐이죠
어떤 절대부등식 또는 일반 부등식에서도 한쪽이 상수가아니라면 그반대쪽의 최대최소를 이야기할수없음
무슨뜻이져 ㅠ 아...고1개념에빵꾸가있을줄이야
윗분들 말씀대로 이문제에선 산술기하는 성립하되 상수가 아니므로 그 등호성립일때가 최대최소가 아니라는거에요 왜냐면 그 상수가원래오는 식에 변수가왓으므로 그변수가지니는 또다른 최대최소가 잇을수 있고 그 럼 그 최대최소랑 등호성립일때 준식의 원하는값을 얻을수잇는거죠
저그렇게 따지면 8/ab 의 최솟값을 구하면 되는건가요?
8/ab가 변하긴 하지만 어쨋듯 8/ab가 a,b를 조합해서 만들수 있는 경우중 최소인것 아닌가요? 근데 8/ab가 되는경우 a,b의값은 하나로 정해지는데;;; 왜이런거죠;
그니깐여 에이가 상수보다 작거아깉으면 그상수가 최소죠 근데 식이라면 그 식의 범위가 다시 잇을테고 그럼 그 두부등식이 모두 등호가 성립해야 최소를 구할수 잇어요 더이상은 님몫
아니근데 위식이 8/ab가 되는 경우는 딱하나로 정해져있다니깐요;
그럼 그렇게 하세요..더이상의 대답은 시간낭비라는 생각이
모든상황에서 8/ab가 일정해야됨 님이 말하고 있는건 특정한 a와b에대해서 말하는거아님?
위에 수학상자님 말씀이 정확해요. 크거나 같다는걸 지칭만 할 뿐이지요. 반드시 등호가 성립하는 부분에서 최솟값을 갖는건 아닙니다. 그래서 최솟값을 구하는 문제에서는 8/ab가 일정해야만 하는거구요.
위 식에서 산술기하평균의 등호성립조건을 만족하는 (a,b)는 단하나뿐이겠지요. 1사분면에서 타원과 원점을 지나는 직선의 교점이니까요. 그걸가지고 '정해져있으니까 8/ab가 일정한거 아니냐'고 말씀하셔서는 곤란합니다. 그 점에서 최솟값을 갖지 않아요.
두뇌와 마음을 여시고 위의 댓글들을 여러번 읽어가며 생각해보시는게 좋을것 같습니다.