[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
게시글 주소: https://snu.orbi.kr/00067233031
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전한길 쌤 참 멋지고 좋으신 분이네요 제가 하고 싶은 말을 다 해주시는 것 같네요 0
1. 경상북도에 있는 한 도시에서 1970년에 출생하였다. 2. 지리학에서 학사...
-
대실모시대에 이구동성으로 강k를 지목하니 궁금해짐
-
https://orbi.kr/00069663711 맥주 질문이나 전적대 질문이나...
-
수능 전에 금딸하심? 깔끔하게 오늘 치고 끝낼지 아님 그냥 안할지 고민중;
-
난이도 어때요 맨날 더프만 보다가 이투스는 처음이네
-
너무 큐브글 자주 써서 이게 마지막이 될 것 같아요 (어짜피 수능 끝나면 큐브...
-
하..................... 오늘도 실모 연계 기출 공부해야지......
-
없어졌다죠 오르비 포인트 검색하면 나옴
-
작수도 비왔는데 하루종일 어두컴컴하겄다 ㅋㅋㅋ시험보기엔 딱좋긴할듯
-
2학년 정시파이터입니당.. 25년대비 강의 들어뒀는데 26년대비 같은 강의 똑같은거...
-
오늘 실모 정산 0
이감 6-4 94 히카 31 88 강k 85사만다 1-1 44 사만다 1-2 41...
-
옯김이라고 김에 명란젓 붙어 있어서 짱맛탱구리였음 옯김이라고 검색하면 나옴
-
지금도 계실까요..?
-
논리학 얘가 인문 국가권력급 소재긴 한데
-
2년정도 외부일 갖다오시다가 이번에 돌아오신 교수님 계시는데 그 분이 유명한 지문...
-
탐구절사필수인데 6월에맞추고 9월에 못맞췄음....11덮은 꽤 괜찮아보이긴하는데 제발 ㅜㅜㅜ
-
오르비 대학 뱃지 가격 10
수능 응시료 + 대학 원서비
-
설경을 가고 설로를 가서 중앙지검장 국회의원 대통령이 되고 싶다
-
Somewhat 그런 Schema생기면 国語 독해速度 will rise 국어 Score 오른다
-
질문받겠습니다 15
감사합니다.
-
출제 한걸까...? 부등식을 대하는 태도를 알려주려고 낸걸까...?
-
빨리 가능하다고 해주세요 제 성적 보시고 가능한 객관적인 이유 들어서.. 이제부터는...
-
의뱃 39900원 치뱃,한의뱃,약뱃,수의뱃,설뱃 29900원 연고뱃 19900원...
-
국힙 고트는 누구임 18
진짜 누구지
-
너는 평생 짓밟으며 살아. 머지않은 어느날 너의 진심도 누군가에게 짓밟히겠지...
-
수능 출제를 보통 1-2달 전에 하지 않나여 그래서 교수님들 실종되는 거고...
-
미미미누 개떡상이네
-
그쯤에 100일 전으로 돌려보내주고 열심히 하라 그러던데.. 돌려보내줄때가 됐는데...
-
그게 나야 바 둠바 두비두밥~ ^^
-
한의대 중에서 입결이 가장 낮은 한의대
-
내가 만드는 거였네..
-
확통이 공감ㄹㅇ 10
2,3점짜리 이항정리에서 식 2개면 식은땀남 27번 막히면 살자마려움 4점짜리...
-
평가원에서 언급된 적 있나요? 사설에서 오늘 처음 알았음
-
밀려서 영어는 버렸는데도 계속 밀리네ㅜㅜ
-
오지훈 선넘네 1
이게 ㄹㅇ 문제로 나올까… 그리고 이럴땐 식현상에서 행성공전궤도 반지름이 별이...
-
살 쪘어 0
진짜 입시는 독극물임이 틀림없다 그걸 자의로 4번째로 들이키고 있는 나
-
오늘 업적 2
스러너 28번 풂+24번 26번 못 풂
-
수능끝나면 슬슬 등장할 글들입니다 1)문과로 돌려서라도 높은대학 가야됨...
-
이것은 저에게 하는 말이기도 해요,, 힘내세요 선생님,,
-
2023년 (수시) 서울대의대 수시합격 연세대의대 논술전형 수석합격 경희대한의예과...
-
부동산좀 공부하세요.
-
근데 어휘 안나오면 3개버려야함 ㅅㅂ
-
확통이한테는 21
실모에서 확통 못 푸는 것만큼 두려운 게 없음 27, 28부터 막히기 시작한다? 걍...
-
행복하고싶은데 1
행복은상대적이기에난충분히행복할수있어 하지만마음에서그걸인정을못해 불행한내가가장편한가봐...
-
있음? 작년에 나왔는데 올해 또나올까?
잘쓸께요 흐흐哈哈?哈哈?