미분에 대하여
게시글 주소: https://snu.orbi.kr/00068035680
오랜만에 공부 얘기 좀 써 보려고 합니다.
제목 그대로 미분에 대해서입니다. (제가 제목 짓는 센스가 없어서...ㅋㅋ;;)
“미분계수란 무엇인가요?”라고 물으면 아마 “접선의 기울기”라고 대답하겠죠?
맞는 말이긴 하지만, 제 경험에 비추어 보면, 여기서도 찝찝함이 조금 남습니다.
“왜 접선의 기울기를 궁금해하지? 애초에 미분은 왜 하는 걸까?” (궁금해하세요.)
이 물음에 대한 저의 답을 이야기하고자 합니다.
우리가 모르는 함수 가 한 점 를 지난다고 합시다.
이 정보만을 갖고 우리가 에 대해서 무엇을 더 알 수 있을까요?
우리가 정확히 알 수 없는 때로는 복잡하고 때로는 추상적인 이상한 함수라도 우리는 이 함수를 알아야만 한다고 합시다.
결국 우리는 이러한 함수를 우리가 “통제하고 다루기 쉬운 꼴”로 “근사”해야 하겠지요.
여기서 두 가지를 명확하게 해야 합니다.
1. 우리가 통제하고 다루기 쉬운 꼴은 무엇인가?
2. 어떠한 근사가 좋은 근사인가?
우리가 통제하고 다루기 쉬운 대표적인 꼴은 "선형", 일차함수가 될 것입니다.
즉, 우리는 미지의 함수 를 아주 좋은 일차함수로 선형근사하고자 합니다.
그렇다면 어떠한 직선이 좋은 근사가 될 수 있을까요?
함수 가 점 를 지난다는 조건에 의하여 기울기가 미지수인 직선을 생각해 봅시다.
그러면 원래 함수와 당연히 오차가 생기겠지요. 그 오차를
라고 합시다.
아래 그림을 보면, 점와 멀어질 수록 일반적으로 원래 함수와의 차이는 커질 수 있겠지요.
하지만 에 가까워질 수록 그 차이는 의 값에 상관없이 항상 0에 수렴하게 됩니다.
그럼 여기서 가 어떠한 값을 가져야 차이가 0으로 가장 빠르게 줄어들 수 있을까요??
위의 두 번째 물음인 좋은 근사에 대한 답이 바로 다음과 같습니다.
좋은 근사 = 원래함수와 선형근사시킨 직선의 오차가 가장 빠르게 줄어들도록!
직관적으로, 오차가 줄어드는 속도가 가장 빠른 직선이 가장 좋은 선형근사라고 할 수 있겠습니다.
이제 우리는 오차가 가장 빠르게 줄어들도록 직선의 기울기를 결정해야 합니다.
이때 0으로 줄어드는 속도가 빠르다는 것은 극한의 언어를 빌려와서 설명할 수 있습니다.
똑같이 0을 극한값을 갖더라도 함수식이 갖는 인수의 개수가 더 많을수록 더 빠르게 0으로 수렴할 수 있겠지요? (조금 더 엄격하게, big O notation, little o notation을 통해 설명해야겠지만 넘어갑시다.)
0이 되는 인수를 하나 제거하더라도 여전히 0으로 줄어든다면 속도가 더 빠르다고 할 수 있겠습니다.
이것을 수식으로 옮겨 적으면 다음과 같겠네요.
우리가 찾은 기울기가 다음과 같게 됩니다!
우리는 위 극한값이 되는, 선형근사시킨 직선의 기울기를 "미분계수"라고 부르기로 약속한 것입니다.
그리고 이렇게 선형근사시키는 행위를 "미분"이라고 약속하며,
이런 최적의 선형근사가 가능하다면, 즉 위의 극한이 존재한다면 우리는 "미분 가능"하다고 부릅니다.
긴 글 읽어주셔서 감사하고, 여러모로 조금이나마 도움이 되셨길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
강사도 틀려 조교도 틀려… 큐브 1등분은 그래도 잘하시는것같던데
-
가버릴거 같애
-
필자는 재수 삼수 군수를 했다. 그리고 수능이 끝나고 계속 연애를 함. 재수...
-
언매하고 한문제 찍어도 화작 만점이랑 동일표점이니까 그냥 밀고 나가야할 듯
-
종강 인사만 12분.. ㅠㅠ
-
N서바 단 한회차도 빠짐 없이 코돈 남기고 2분밖에 안 남아서 못푸는데 해설지에는...
-
공부 ㅇㅈ 1일차 10
오늘부터 매일 올릴게요 다들 파이팅!
-
수능 전 3일 0
국어 실모 뭐 풀까요? 이번주 상상 5-8, 5-10, 이감6-9, 혜윰 시즌2 2,3풀듯
-
좀 어렵게나오면 다 틀릴 자신잇음..
-
사실 언매런 하고 처음 공부
-
ㄱㅈㅇ
-
저도 김종익 강사 Q&A 보다가 찾은 거 하나 올려보죠.
-
음음 띠요요잉
-
철학과가 가고파 6
…
-
무엇이 더 낫나요?
-
취킨취킨 5
맛있는 취킨
-
내일실모 2
내일도 국어1 수학96 쟁취하자
-
88년생이 왜 있지 독동반상회는 또 뭐임ㅋㅋㅋㅋㅋ
-
"여백없음"
-
성적이 안나오면 다들 방법이 문제라 하지만 그방법이란게 뭔지는 안알려줘 사실 이미...
-
“나를 이끄는 별은 참말이자 진리였다. 그 별을 따르며 맨 처음 나는 내 자신의...
-
천민이 감히 나대면 역할 행동에 대한 제재를 받는구나 왤케 새롭지 오늘
-
용어 같은거 땜에 그런가?? 작년같은 수필이 더 어렵지 않나..
-
고전소설 비연계 나오면 그냥 시험지 찢겠음
-
영어 단어 1
지금 3개년 영어 기출 단어 복습하고, 영어 수완+수특 단어장 뽑아서 모르는 거...
-
주식이나 할까 본인 뭐 좋아하는것도 딱 그 내부에서 논란 터지기 직전에 다른걸로 갈아타는거 잘함
-
지금있는거 빼면 딱 한두개정도 더풀수있을거같은데 이감오프랑 김승모 제외 맛도리였던거...
-
내가 37인가 받았는데 20몇등임....30몇명 쳤는데
-
1~2등급 정도 되는 실력인데 항상 실수해서 점수가 계속 떨어집니다 4월부터 개념형...
-
시즌3 8회 이렇게도 낼수있는걸 깨달음 ㅋㅋ
-
문제 좋나요?
-
슬슬 졸리다 2
오늘 한 걸 3번이나 더 하고 내년애도 해야된대 몸이 부셔지겠어 아주
-
최근 최저점 44 11덮 2점3개 ㅆ.ㅂ 수능전까지 최저점을 47로 만들고싶은
-
있나요?? 실모 1컷 오고 가는 성적, 69평 1인데 수능 날 2등급 혹은 그...
-
국어 실모 풀때 4
똑같은 방법으로 풀고 다 제 기준 확실한 근거로 답 체크했는데 1-3 진동하면 뭐가 문제인가요
-
신경향파? 1
뭐야
-
몸이 큐웅 큐웅거림
-
다시하라면 못할정도로 내 모든걸 갈아넣은 1년을 보낸다면 결과가 어떻든 수긍할 자신...
-
이감 엣지 1
학원용 모의고사 6-9 , 10 이 엣지 모의고사에요??? 학원용 모의고사에는...
-
6평에 나온것 같은거 무지성 근사 때리는거 평가원이 저격하거나 그러지 않나요??
-
저 분 햄지르라고 한능검에서 커뮤픽•사파픽으로 유명했던 강사님이셨거든요? 저는 물론...
-
오늘도 가나 지문에 사회나 과학 나왔을떄 예상한거지 걍 독서 문학에서 뭐 예상한다고 말한적있음?
-
Y축대칭 언매미적사문한지.
-
작수보다 어렵나요???0
-
수능날 머 먹지 12
제육 먹고 싶은데 다 식을 것 같음
-
그래도.. 1
내곁에 한 사람이 있으니까 행복하다.. 이 사람마저 없었으면 진짜 힘들뻔.. 나도...
-
성적 상승 ㅁㅌㅊ 17
https://orbi.kr/00024699094 반년만에 백분위 53 올림