구간 별 함수 영향력 죽이기
게시글 주소: https://snu.orbi.kr/00070041033
주어진 함수 f(x)의 그래프가 다음과 같습니다.
단순하게 생각할 때 이 함수에 어떤 함수 g(x)를 곱하면
구간 [t-1, t+1]에선 g(x)의 함숫값이 0에 더 가까워지고
구간 (-\infty, t-1)과 구간 (t+1, \infty)에선 g(x)의 함숫값이
힘을 잃어버리게 될 것입니다.
예를 들어 위 함수에 cos(ㅠx)를 곱하면 그래프가 다음과 같습니다.
t=1일 때 구간 (-\infty, 0)와 구간 (2, \infty)에서는
g(x)가 아무런 힘을 쓰지 못하게 되었고,
구간 [0, 2]에서는 곡선 g(x)의 그래프와 비교할 때
각각 x=t-1과 x=t+1에 해당하는 부분에 가까울수록
그래프가 0에 더 가까워졌음을 확인할 수 있습니다.
미분해서 도함수의 부호를 조사하는 것도 의미가 있겠지만
직관적으로 생각해 볼 때 x절편 조사해두고
기존 곡선보다 조금씩 y축에 더 가깝게 그래프를 그려주면
간단하게 이해해 보는 데 도움이 될 수 있겠습니다.
a=-3, b=-4 정도로 예시를 들어보았을 때
함수 f(x)-|f(x)|의 그래프는 다음과 같습니다.
f(x)의 함숫값이 음이 아닌 실수일 때는 0을,
음의 실수일 때는 그것의 두 배인 값을
함숫값으로 하는 함수임을 확인할 수 있습니다.
만약 함수 f(t)-|f(t)|를 구간 [0, x]에서 적분한 것을
x에 대한 함수 h(x)라 생각해 본다면
(a, b)=(-3, -4)인 경우에 h(x)는
어떤 양의 실수 k에 대해 구간 (-\infty, -k)와
구간 (k, \infty)에서는 상수함수이고
구간 [-k, k]에서는 감소한다 생각할 수 있겠습니다.
비슷한 맥락입니다.
f(x)는 대충 sin함수이고 f(ㅠx)도 마찬가지입니다.
g(x)는 구간에 따라 0 또는 1을 함숫값으로 가집니다.
g(x)=0인 구간에서 f(x)는 소멸하고
g(x)=1 구간에서 f(x)는 유지될 것입니다.
이러한 논리로 두 적분값을 확인해 보시면
어떤 값 k가 양의 실수 p에 대해 0 이상 p 이하일 때
k=p가 되어야 하는 느낌으로 풀이를 이어가실 수 있습니다.
(나) 조건에 g(x)에 곱해져있는 두 함수의 그래프를 확인해보면 다음과 같습니다.
먼저 함수 |x(x-1)|+x(x-1)의 경우
구간 (-\infty, 0)과 구간 (1, \infty)에선 0을,
구간 [0, 1]에서는 각 x값에 대해 2x(x-1)을 함숫값으로 합니다.
함수 |(x-1)(x+2)|-(x-1)(x+2)의 경우
구간 [-2, 1]에서는 0을,
구간 (-\infty, -2)과 구간 (1, \infty)에서는 -2(x-1)(x+2)을
함숫값으로 하는 것을 확인할 수 있습니다.
여기에 어떤 함수 g(x)를 곱한다면
구간 별로 영향력이 변할 것입니다.
강해지거나, 줄어들거나, 사라질 것입니다.
강화, 약화, 소멸이라고도 이야기해 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비 25학번 의대생 님들 내년에 입학하자마자 휴학할 거임?? 4
어떡하실 거임?? 증원 혜택받아서 입학한 의대생들도 선배가 시키니까 동참할까??...
-
좀 아쉽네요ㅠ 0
미적 어떻게 30번 푸는지는 알았는데 시간이 없어서 못 풀었네요ㅠ한번 더 하면 의대...
-
건국대 빼고 다 막는데 건국대 입결이 타 수의대보다 높은거 감안하면 과탐 해야겟죠?
-
미적 3틀 89 0
1뜰까요?
-
어느게 더 어려울까
-
성공하더라도 대학은 2027년에 간다는거잖아..? 와 ㅁㅊ
-
O/X 퀴즈 27
위상수학에 대해 잘 알지 못하는 사람도, ‘위상동형‘의 개념에 대해서는 아는 경우가...
-
3-2 기말고사 3
찍고 자진 않을 건데 챙기긴 해야겠죠? 그냥 3-2 중간때처럼 전날치기할라하는데...
-
영어가 생각보다 타격이 없구나
-
지각 하고 죄송합니다 안 했다고 예의 없다 하는데 부모가 니 포기 했다 하는거는 예의 있는건가 흠
-
수능이 끝난 후, 가채점을 통해 자신의 성적을 분석하고 전략적으로 지원 대학과 모집...
-
ㅈㄱㄴ
-
연애하고싶은데 어디가서해요?
-
이제 현역되는 고2인데 수학땜에 고민입니다.이번 모의수능에서 22.28.29.30...
-
근데 요즘 FM 악습이라고 잘 안 시킴 ㅠㅠ 학생회는 자주 함 무적해병 화이팅...
-
이거 아니었으면 3합 4 확정으로 발뻗잠 하는 건데 하.. 가채점표만 잘못 옮긴...
-
공군 2월입대 커트라인 10
99점...
-
에이 씨발 재수해서 간 고려댄데 삼수망해서 삼수고려대됐는데 좆같네 진짜 사수...
-
대학 못감 2
앙 기모띠
-
N제에서도 못볼정도로 어려웟나
-
명문대 옯붕이들에게 차은우의 껍데기를 줄테니 초졸로 살라고 하면 다들 바꿀수있을까
-
뉴런은 23, 24 때 들어서 심특 들으려다가 김범준도 좋다던데
-
담임쌤 피셜 3
이번에 대구지역 수능 가채점 결과 보니까 애들 최저 충족률 상태가 말이 아니다
-
올해 수능(국수영 사과탐)이 2~3년 전보다 쉬운게 맞나요? 1
언론 분석 보니 그렇다고들 해서요. 특히 수학 과학은 예년 2~3년전보다 절대적인...
-
고속성장 소신 1
소신(노란색~연한 초록색) 정도면 써볼만한 가능성인가요? 건동홍은 적정이고 성대,...
-
지인들 커피 한 잔씩 돌리고 강제로 풀게 시키는중 ㅋㅋ 일단 2025학년도 수능 친...
-
착하게 살게요 ㅠ
-
일단 가지고 있는게 좋겠죠?? ㄹㅇ 짐정리 하다가 버릴뻔
-
오른 만큼 내려가고 내린 만큼 오르는 듯
-
대구경북 지역인재 있는데 혹시 어느 정도까지 가능할까여 라인 봐주실 분 계신가요
-
도서관이 좋아요 0
편안해짐 기분이
-
어떻게 신청하는 걸까요?
-
맞팔ㄱㄱ 16
대신 똥글을 견디셔야합니다
-
진학사 업데이트 0
5시쯤 되겠죠?
-
나이 먹을수록 뭐든 더 어려워지냐,,,
-
수학 n제 4
기출 풀고 n제 들어가려는데 1후 2초가 풀기 좋은 n제 뭐가 있을까요?
-
좋은건가요? 국어를 ㅅ망쳤는데 탐구는 ㄱㅊ게 나와서…
-
재수 예정이고 사탐런 하려는데 둘중에 뭐할까요?? 사문은 무조건 하려고 했는데...
-
서울대 연세대 성균관대 고려대 한양대 경희대 이화여대 서강대 동국대 건국대/중앙대...
-
심지어 잘 봄 하...
-
난 물1 생1 중딩때무터 통과하면서 역학 재밌게 했었는데……..
-
영어 개년 1
영어기출 몇개년까지 보는게 좋나요?
-
홍콩을 가봤다는 사실을 깨달았다
-
어떻게 풀어야하나요
-
저격당했네;;
-
안 그래도 탐구 창났는데 여기서 영어도 2 떴으면 진짜 그냥 복학했을 듯
-
생각보다 이슈가 없는거 보면 우리나라 입시를 주도하고 여론을 주도하는...
오 뭔가 저랑 사고방식이 비슷한 부분이 있군요 좋은 글 잘 보고 가요~
이거 진짜꿀팁인데
전 아니에여ㅠㅠ 직관적으로 푸는걸 좋아할뿐..