sqrt(2)의 근삿값을 찾아보자 !! ㅎㅎ..
게시글 주소: https://snu.orbi.kr/00071391273
x^2-2y^2=1의 자연수 해 x,y를 생각해보자 ㅎㅎ.
그러면 x,y가 커질 수록 sqrt(2)=x/y에 가까워질 것이다. (1의 힘이 약해질꺼니까..)
그럼 큰 x,y를 어케 찾을까.
우선 ㅈㄴ 작은 x,y를 찾아보자.
그럼 금방 (x,y)=(3,2)를 발견할 수 잇다 ㅋㅋ.
이 때 윗 식을 대충 분해해보면 1=(x+sqrt(2)y)(x-sqrt(2)y)을 만족하면 되는데
양 쪽을 제곱해보면
1=(x+sqrt(2)y)^2(x-sqrt(2)y)^2=(x^2+2y^2+sqrt(2)*2xy)(x^2+2y^2-sqrt(2)*2xy)
즉, (x,y)의 해로부터 (x^2+2y^2,2xy)라는 해가 새롭게 생성됏다. 크킄
당연히 다시 생긴 해가 원래 해보다 ㅈㄴ 큼을 알 수 잇다.
이걸 조금 해보자 그럼 초기 해 (3,2)에서부터
(3,2) -> (17,12) ->(577,408)
즉, 우리는 577/408이라는 sqrt(2)에 매우 근접한 값을 얻어냇다. (당연히 더 하면 더 할 수록 더 근접해진다.)
(참고로 577/408은 1.41421568628...으로 벌써부터 진짜 ㅈㄴ 비슷하다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 하는중에 팔로우 알람오면 맞팔박음.
-
오목둘사람 2
자신 있으면 자퇴빵 하자 심심한데
-
팔로잉 목록 봤는디 12
왜 1빠따가 정벽이었을까 아마 수능 성적 궁금해서 팔로우 했던 거 같은데
-
1년을 기다린다라다라 11
마다라 나 사람 얼굴 기억 못하는데 이름도 일주일이면 까먹는단 말야
-
정작 봉직의들은 밖에서 회사 다닌다고 말하고 다니는데 이놈의 나라에서는 의사라는걸...
-
음 .. 2
-
원래 불법재르비는 확인되면 사형당하던데 빌런 아닌 이상 놔두네
-
원래 저번시즌엔 트로사르가 결정력이 좋았는데 이번시즌에는 그 폼이 안나오는중
-
롤 너무 어렵다 7
시작한지 한 달 반정도 된거 같은데 너무 어렵노
-
재르비 아는 법이 19
팔로잉 목록이 시작부터 옯창들이면 재르비 확률이 매우 높음 뉴비가 타락햇으면...
-
아이는 신이다 14
개이뽀
-
다 자냐 3
잘자 난 짐정리 할게..
-
흠… 뭘하고 싶었더라 나
-
자야지 2
다들조은밤
-
첫닉은 11
하이샵
-
민감한 주제인건 알지만...
-
내 첫닉... 3
이 뭐였는지 나도 까먹음
-
22년도 초반 24년도 초반 이때 했었는데
-
뭔가 인강듣는 시간 아깝고 2배속으로들어도 뭔말인지 알아들어서 강의는 다 2배속으로 돌려봤었는데
-
얼마전에 우승컵 하나따긴했는데… 주축선수들 폼이 안돌아옴 테오는 너무 갈려서 폭발력이 죽음
-
커뮤가 이래서 무서워
-
브론즈5명vs챌린저5명 해도 1557은 쉽지않을듯…
-
5~래전에 2
함께 듣던 노래가~
-
경찰들 때리고 밀고 방패 탈취하고 법원부수고 ㅋㅋ 고담시티같음
-
진짜 망함 11
4자리 숫자만 보면 1557 생각남..
-
이제 거의다 성인이라는 게 믿을수가없네
-
진격거도 끝나니까 진짜 최신 애니들 볼게 없네
-
근데 그때 프사 아는분은 조금 있더라구요 그러므로 그때 프사이자 제 첫 프사 댓글로...
-
무만 겁나게캐더니 왠일이냐 예전처럼 리그좀먹어보자
-
뭐지 내가 못해진건가
-
진짜 궁금해서
-
ㄹㅇ 개 시끄러움 ㅋㅋㅋ
-
잼민이 목소리로 가오 잡거나 깝치는데 개현타옴
-
욕 한 번을 1년에 쓸까말까한 ㄹㅇ 클린 유저
-
언더테일 진짜 재밋엇음 사실 이미지가 좃망해서 그렇지..
-
안녕 ㅃㅇ 2
나 자는동안 내 글 많이 읽어줘 그런거 지금은 안웃길지 몰라도 꼭 혼자 멍때리다가...
-
답지 활용법. 3
결론은 해볼 수 잇는 아이디어를 다 써보고 답지를 보는 것. 그리고 답지를 제대로...
-
그냥 오버워치를 너무 사랑할 때가 있었는데 역할고정 나오고 정 다털려서 접음 딜러...
-
메이플 공익 ㅇㅇ 유니온 9천이상 본캐 290이상은 메공가자
-
나한테 옵치란 6
바야흐로 롤이 헬퍼때매 망한다 하하캬 논란이 졸라 심하던 시절 옵칠로 갈아타서...
이정도면 열심히 썻어..
스쿼트라
squirt요???
어휴
에...
파이 근삿값 구하는 급수식은 봤는데
쌍곡선 점근선이었군요