생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
게시글 주소: https://snu.orbi.kr/00071448904
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
두 개만 붙을 확률이 높은데 너무 고민되네여…
-
중시경건 외동홍 0
저 말 근절시킬 방법 없나요
-
누구재릅인지 티많이나나 사실재릅아님 뉴릅이에오
-
“외동홍” 8
본캠:발작 분캠:ㄹㅇㅋㅋ
-
터질것같이 빵빵한 엉덩이를 면접관님앞에서 빵딧빵딧♡ 흔드니까 바로 최초합시켜주더라
-
노는맛이라 함은 유흥... 술 클럽 이런거요 이런거 재밌는거 다 겪어보고 노는거...
-
자작문제 수학 3점 18
-
쿠팡 택배상하차말고 다이소 상하차 어떰?? 2시간 파트타임인데 무서워서 지원못하고있는중,,,ㅎㄷㄷ
-
이거 알면 천덕
-
생윤함풀어봐야지 0
흐흐
-
2웡: 수분감 벅벅, 뉴런 발췌수강 (수2,미적 그래프,적분들을예정), 러셀 고트...
-
내 잔고는 ㅂㅅ이다
-
패키지로만 판매하는거??
-
닉변할까 1
ㅋㅋ
-
난 ‘그러니까 수학1등급이 안 나오지 ㅉㅉ’ 이거였음...
-
에타 cpa게시판만 잠깐 보려고하는데 혹시 대여가능하신 분 있으신가요?? 대여비는 드릴 수 있습니다
-
질문은 언제나 환영입니다 여러분
-
반박시 곤장 10대
-
시드니
-
걍 미적할란다 1
확통해도 다 맞출 자신이 없군아
-
글에있는 조건이랑 특별한훈련♡까지 겸해주신댔어요 첫수업이 기대돼요!
-
4% 문제 보여주면서 이거 맞추면 1등급 이러던데 ㅅㅂ 저거 맞추고 미적 15점...
-
얼마이므ㅡ
-
그게 나야 바 둠바 두비두밥~ ^^
-
맞팔구. 0
.
-
난 변할 수 없는 건가봐
-
21학년도 물2화1러인데 그땐 물2가 2등급 블랭크였거든요? (고인것도 있지만...
-
26년도에 모집을 하기는하는건지뭔지 모르겠네요. 26년도 모집안하면 이때...
-
집이 숭실대 주변이라 관독다니면서 목시 단과들을 예정인데 주변 관독 ㅊㅊ좀...
-
1편 링크...
-
주4일 하면 힘듦? 설거지랑 재료 준비라는데
-
개노잼이네 1
-
설에 내려가서 친구들 보고 좀 쉬다올까 생각하다가도 친구들 대학합격소식이랑...
-
강기원 쌤 복테 6
어싸는 아직 어려워서 못 푼 문제들은 고민하다가 1주일 안에는 못 풀어가서...
-
알바하고 싶은데 1
신입생이라 대학 시간표를 몰라서 신청을 못하겠네 목금토일만 신청해볼까
-
유명한 학술동아리이기도 하고, 매년 7-8월에 대전에서 모여서 4박 5일 정도...
-
현역 07 노베입니다.. 완전 노베이스라 수학부터 시작하려는데 50일수학 강의를...
-
입문n제 2권이 5만원 하는 비정상적인 가격을 보니까 좋다고하는거만 풀려고하는데...
-
ㅋㅋㅋㅋ
-
노베이스 치고 이 정도면 난 훌륭하다고 생각함
-
애초에 3d가 있는데 2d를 왜 좋아하는지도 이해 안되고
-
내 진짜 실력은 44444가 아닐까
-
아니... 인간 무게중심 지지대 중 한군데를 그것도 정확히 FM자세로 킥한다는게 실화?!?
-
과외하는 스터디룸 임대해서 거기서 수업하는데 거기에 가져다놓으면 안되겠지? 부정탈라나
-
추가합격하고싶어
-
노는것도 술먹는것도 클럽가는것도 너무 행복한데 재수걱정에 마음은 불안하고......
-
시대재종 수리논술 강사로 가셨네 예전에 엔제 재밌게 풀었는데 갑자기 벌점받고...
-
타율 잘나옴 특히 요붕이들은 진심으로 믿고 있었어 사랑해~~
-
진짜 ㅈ됨. 나 어쩌냐 대학 못 가겠다
-
학교 문제에 이거 그대로 나왔는데 숫자 보고 무슨 문제집인지 아시는 분 댓글...
투과목 칼럼은 개추