(안녕맨)<일요 수학 칼럼 - 경우의 수 접근방법에 대해서>
게시글 주소: https://snu.orbi.kr/0008691610
.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
경의중앙선 온갖사람이 다낑겨타네
-
몬스터사니까 유통기한 1시간 지난 삼각김밥 줬음 학원가는길에 먹으래
-
재수생 어캄? 1
아침에 독서실갈때 씻고감??
-
2배수가 아니라 지원자 전체 중 최고-최저가 15넘으면 그걸 나눈다니 그럼 막 입결...
-
얼버기 3
갓생 2일차
-
갑자기 궁금해서 그런데 저출산이 심해서 20년 뒤쯤엔 대학들 안락사할 거 같은데...
-
기차지나간당 3
부지런행
-
얼버기 4
그래그래휴가나왓서
-
네
-
점공해라 0
-
얼버기 3일차 4
-
왜 점공댓글에 큰일났다 이상하다 이런 말이있지 폭 아닌줄 알았는데 폭인가요??
-
흰목이버섯에다 대고 외계인 연골이라는 드립쳤다가 패드립먹음 이게 패드립할만한일인가
-
-페퍼로니는 닭대가리랑 돼지혀를 갈아서 만든다고 음해하기 -갈릭디핑 페인트같다고...
-
ㄹㅇ 한입한입 먹을때마다 혈관하나씩 굳는느낌인데 멈출수가없음 죄짓는거같아
-
얼버기 1
부지런행
-
마늘맛카드뮴옐로우캬캬
-
얼버기 2
오늘부터 잇올 간다..
-
수능치고나서 다시 푸니까 12번부터 턱턱 막히는데.. ㅠㅜㅜㅜㅠ과외잡으려면 1...
-
장문) 원서접수, 합격발표 때 중요하다고 생각하는 것 0
원래도 자주 올라왔던 이과vs이과, 문과vs문과에 더해서 교차지원이 가능해진...
-
점공 18등 ㅅㅂ ㅋㅋ
-
지금 보니까 낚시 키워드 존나게 많네 48점 1등급 어케했노....
-
매그너스 칼슨 0
결혼하셧구나
-
불면증인가
-
내 뒤에 한 명 있다
-
수능과 바둑이 비슷한 이유 (Ft. 숨은 그림 찾기) 2
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
얼버잠 1
-
1코 꽁으로 얻는 거잖아...부러움 +1 안해도 사회나가서 1살이득볼 수 있고
-
여기 댓글 보니까 자꾸 특정 교재는 오개념 없다는 댓글 다는 사람들이 있는데,...
-
https://youtu.be/mtHffXcQ3uY?si=ZoQS380c8UWmXWz7 최초합기원
-
진지하게 아파트 과외 전단지 붙여도 될 정도의 학력인가요,,,
-
그리고 연고대 편입판으로 다시 돌아올거임
-
둘 다 멀어서 자취나 기숙사를 다녀야하고 학비걱정은 없습니다. 의견주시면 정말 감사하겠습니다.
-
재입대 한 이유 0
군복이 내 수의가 되길 하고 생각했음 그런데 어느 교과님, 동기들 때문에, 이...
-
휴학하는것보다 더 큰 혼란과 파괴, 망가가 오겠죠 지금보니 그 누구도 학년 어레인지...
-
본인 23년도에 재수할때 기숙에서 했었는데 67->61되서 나옴(물론 지금은...
-
왜지
-
새벽에 똥글쓰다가 30렙 노랑색 되니까 개쪽이네이거;;
-
재수때 10키로 찐거 대학오자마자 3월에 그대로 빠짐 얼굴살만 빼고 ㅠ
-
주술회전 보고 똥 먹고 온 기분이라 한탄하듯 똥글 쌈 ㅈㅅ
-
잘 보고계신겁니다
-
ㅈㄱㄴ
-
그때 너도나도 씹덕친구들이 귀칼애니20화 보라고 히노카미카구라 원무 보라고 호들갑은...
-
아 왜케 춥지 1
긴팔 입어야하나
-
아직도 법 들이대면 다 인줄 아는 저능아 없지요? 법적용 자체가 그냥 코걸이...
-
에밀리아는 예쁘지만 ㅈㄴ 하차마려운데
-
일생겨서, 바빠져서 어쩔수없이 드랍한거 아니고 순수 노잼이라 드랍한 것들 그 비스크...
-
진짜재밌게본애니 2
너에게 닿기를 <<<< 진짜 마음이 치유되는 느낌.. 몽글몽글
-
ㄹㅇ이 명작인데..똥 먹는 기분도 안 드는데 쿄애니 방화 이후로 뭐 안 나오는 기분이라 슬프다
감사합니다!
약속지켰어요 ㅎ
ㅋ
오... 이번 칼럼 좋네요^^
약간이라도 도움이 됬으면 좋겠슴당 ㅎ
감사합니다ㅠㅠ 뜻밖의 꿀이득!!!
감사합니다 ㅎ
헷갈리는게 기출문제중에서 1,1,2,3,4 다섯개중에 네개고를때의 확률있잖아요..똑같은게있을땐 전체를 어떻게 생각해야하는지 모르겠어요.. 경우를 나눈다고해도 저 두개의일을 서로다른거로봐야하지않나헷갈리기도하고
확률은 경우의수로 구하는게 아닙니다 근원사건의 개수문제에요
근원사건은 같은것도 다른것으로 보기때문에 전부 서로 다른것으로 생각하시면 됩니다
예로 흰공 3개와 검은공 2개 에서 흰공이 나올 확률은 3/5 라고 하죠?
하지만 경우의수로 보면 공을 꺼냈을때 나올수있는 경우의수가 흰공 검은공 2가지이고 흰공이 나오는 경우의수가 1가지니깐 1/2가 됩니다
이렇듯 확률은 경우의수로 푸는게 절대 아닙니다
그래서 위 문제에서는 서로 다른 5개중에 4개를 고르는 거라 전체 근원사건의 개수가 5 C 4 가 되서 5가지가 나와요 (모든 확률문제에서의 선택은 조합으로 합니다 서로 다른n개중에 r개를 선택하는것이니까요 )
근원사건이 다섯개밖에안되는데 답이 십오분의일인 이유가뭐져ㅜ
정확히 어떤 문제인지를 말씀해주세요
작년 9평 가형 15번문제일껄요?? 기억이가물가물..합니다
작년 9월 모평 15번 문제는 4개를 뽑아서 나열하는겁니다
그래서 5C4 x 4 ! 이 전체 근원사건의 개수가 되요 ㅎ
저건 5 ! =120가지입니다 ㅎ
아마 a<= b<= c<= d 가 8가지라서
8/120 = 1/15 가 나온듯해요
ㅋㅋ
쌤 이번 칼럼 아주 좋네요^^*
감사합니다 ㅎ 이번 수능 제일 잘보셔야 합니다 !!
수험 끝나고 오랜만에 오르비 들렸는데 수험생분들에게 정말 도움이 될 것 같은 칼럼인것 같아 좋아요 누르고 가요!!
과찬이시네요 ㅎ 감사합니다
않..
와 지렸습니다... 머릿속에서 섞여있던 것들이 정리 되는 기분이네요. 근데 수형도나 표는 어떤 상황에서 써야 할까요? 계산으로 구할 수 없을때 쓰면 되나요?
그건 계산이 아니라 분류하는 방법 중 하나에요ㅎ