[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://snu.orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기차지나간당 0
부지런행
-
큰일남
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
얼버기!!! 0
열공 ㄱㄱ혓!
-
작년에 짬짬히 했어요! #알바 #큐브
-
진짜 잘게요 1
다들 안녕히....zzzz
-
엉덩이가 너무아파요 이게맞나
-
이상태로 재수하면 올3찍기힘드나요 그냥 대학 안가는게 좋을지모르겠습니다 최근들어...
-
내가 헤어지는 선택을 해도 그건 너가 싫어서가 아니라 그게 너를 위한 선택이라고 생각되서야<<<이게 뭔 소리임 하.. 2
ㅋㅋㅋ 오등분의 신부나 벅벅 볼까
-
현재 고1 내년에 고2 올라가는 학생입니다. 모의고사 다 풀고 나머지 항목은 찍으면...
-
돌이켜보면 그냥 사탐에 흥미도 있고 문과 중에선 수학 많이 쓰는 학과라 무지성으로...
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
배고프네 0
이따 신라면 끓여먹어야지
-
야추깜?
-
영남대 갈걸 1
입학식 마크 서버 열어서 했다니 진짜 개꿀잼이겠는데…
-
포기하는게 맞겟조?.. 막차라도 기대해도 될까요ㅜㅜ
-
에휴이 인생 ㅆㅂ 소주 마렵네
-
그냥 만신이네....
-
다음생엔 0
조사병단이 될거임!
-
디엠창 까보면 한 화면에 12시간 전 디엠이랑 한 시간 전 디엠이 공존함
-
낼 부터 팔로우 해야겠다 글 제목만 봐도 재밌네
-
오르비에서 그런걸 바란게 너무 사치였던 걸까요
-
4시간 수업 있는데 조졌네 이거
-
분캠뱃지 달고잇으니까 현타와서 뗏어요 (사실 아무도 안물어봄) (그리고 아무도 안궁금함)
-
점공에선 소수 둘째까지 밖에 안 뜨는데 예를들어 점수가 655.1782인 사람이랑...
-
기억왜곡인가
-
주왁구 옥주희 하고싶어졌음 하
-
선착 두명 천덕 4
ㅁ
-
수능 끝나고 면접준비 밤 새가면서 한게 엊그제같고 12월부터 쉰것도 얼마...
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
신지드 쳐뽑고 픽창부터 던진다길래 무시했는데 하자마자 미드로 달리면서 패드립 하길래...
-
살자 마렵다 아 개어지러움 심장 개빨리 뛰네
-
??
-
다른 글에 댓글을 써도, 게시글을 써도 덕코가 안 모이는데 이거 버근가요
-
내가 개똥글 싸면서 ㅈ뺑이 치잖냐
-
저랑 아이디 공유하ㅛㅣㄹ분? 댜신 전 메가를 이라고 하면 안 되겟죠
-
건들지말고 쓰다듬어주세요
-
운이 따라주지 않는 걸 보면 1. 착하게 사는 게 아니거나 2. 착하게 살 필요가...
-
시대 수학 0
시대 라이브반 박종민t 듣고 있고 뉴런해야하나 고민중인데 해야할까요? 박종민t 수업...
-
왼쪽처럼 살고있다.
-
하루종일속쓰려요
-
이신혁T 이번주부터 들으려고 하는데 지나간 영상이랑 교재는 살 수 있는건가요?
-
대학커뮤니티 노크에서 선발한 동국대 선배가 오르비에 있는 예비 동국대생, 동대...
-
여붕이 ㅇㅈ 0
바인공물드 아는사람? 깔깔 친구하자
첫번째 댓글의 주인공이 되어보세요.