조합에서 궁금한 것 있습니다!!
게시글 주소: https://snu.orbi.kr/0008123464
저는 아직도 중복조합이 왜 조합으로 표현될 수 있는 지 아직도 이해가 안되요..
nHr = n-r+1Cr 이거말입니다!!
서로다른 n개에서 r개를 순서없이 뽑는게 조합이고,
서로다른 n개에서 r개를 중복을 허용해서 순서없이 뽑는게 조합인뎅.
n-r+1개는 서로다른 n-r+1이 아니지 않나요?
그냥 외워서 적용하긴 했다만, 궁금한 점이었어요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2014년 수시의대 심층면접 온라인 개인지도(지방학생 전용) 0
1. 지도강사 주요경력 제38회 사법시험 합격 제28기 사법연수원 수료 1999년...
한석원T가 그거 유도원리 생각질서에서 알려주시던뎅.. 쓰질않다보니 까먹었네요
아!! 알고싶어요 !!
칸막이
저도 나름 교과서를 중심으로 개념을 잡았던 터라, 칸막이 예시로 조합을 유도했다는 것 까진 이해가 가지만,
서로다른이란 조건에 충족하지도 않으면서 어떻게 저렇게 되는 지가 매우 궁금해요.
A B C 3종류의 알파벳을 중복을 포함하여 8개 뽑는 경우의 수를 생각해 보자. (어떤 알파벳은 안 뽑아도 됨)
어떤 알파벳을 뽑았는지 모르니까 전부 X로 표시하자. XXXXXXXX 가 되는데, 이러면 구분이 안 된다.
구분을 하기 위해 구분선을 넣어주자. XXXX/XXX/X
이러면 맨 왼쪽은 A, 중간은 B, 오른쪽은 C라고 구분할 수가 있게 된다.
가령 위의 예시는 (A,B,C)=(4,3,1)이고, XXX/XX/XXX 는 (3,2,3) 뭐 이렇게.
(0,0,8) 같은 것도 //XXXXXXXX 로 표현하면 된다.
즉, 구분선 (3종류를 구분해야 하니까) 3-1 = 2개, 알파벳 8개를 합쳐서
10개의 문자로 중복조합을 모두 표현할 수 있는 것이다.
그러면 이제 10개의 자리 중에 문자가 들어갈 8개를 정해 주면 구분선 2개는 알아서 자리를 잡는다.
(이는 구분선이 들어갈 자리를 먼저 정해 줘도 마찬가지)
일반화.
문제에서 n=3, r=8 이었다.
(3-1)+8 = 10개의 자리에서 문자가 들어갈 8개를 정하는 것 = 10C8
(n-1)+r = n+r-1개의 자리에서 문자가 들어갈 r개를 정하는 것 = (n+r-1)Cr
구분선이 들어갈 자리를 먼저 정해 주면 10C2, (n+r-1)C(n-1) 인데 성질에 의해 어차피 값은 같다.
중복조합은
서로다른 n개에서 중복을 포함하여 ~ 보다는
n종류를 중복을 포함하여 r개 뽑는 ~ 으로 생각하는 것이 오해의 소지가 없습니다.
A B C가 각각 5개씩 있는데 여기서 뽑는다~ 라면
n에 15를 넣을지 3을 넣을지 헷갈려져요
오오! 제대로 알아갑니다. 감사합니다.!!
아 ㅋㅋ 제가 바보였군요. 쓰잘데 없이 머리썼습니다...ㅋㅋ
결국 네이버의 힘을 빌려 해결했습니다!